

Co-exposure to highly allergenic airborne pollen and fungal spores in Europe

¹<u>Myszkowska Dorota</u>, ²Bogawski Paweł, ³Piotrowicz Katarzyna, ⁴Bosiacka Beata, ⁵Grinn-Gofron Agnieszka, ⁶Berger Uwe E., ⁷Bonini Maira, ⁷Ceriotti Valentina, ⁸Charalampopoulos Athanasios, ⁹Galán Carmen, ¹⁰Gedda Björn, ¹¹Ianovici Nicoleta, ¹²Kloster Mathilde, ¹³Oliver Gilles, ¹⁴Pashley Catherine H., ¹⁵Pätsi Sanna, ¹⁶Pérez-Badia Rosa, ⁴Puc Małgorzata, ¹⁷Rodinkova Victoria, ¹⁸Skjøth Carsten A., ¹³Thibaudon Michel, ⁸Vokou Despoina, ⁸Damialis Athanasios

¹Department of Clinical and Environmental Allergology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland.

²Department of Systematic and Environmental Botany, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.

³Department of Climatology, Institute of Geography and Spatial Management, Jagiellonian University, Kraków, Poland.

⁴Institute of Marine and Environmental Sciences, University of Szczecin, Poland.

⁵Institute of Biology, University of Szczecin, Poland.

⁶Department of Oto-Rhino-Laryngology, Medical University of Vienna, Austria.

⁷Hygiene and Public Health Service, Department of Hygiene and Health Prevention, Agency for Health Protection of the Metropolitan Area of Milan (ATS), Milan, Italy.

⁸Department of Ecology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Greece.

⁹International Campus of Excellence on Agrifood (CeiA3), Andalusian Inter-University Institute for Earth System Research (IISTA), University of Cordoba.

¹⁰Department of Environmental Research and Monitoring, Swedish Museum of Natural History, Stockholm, Sweden.

¹¹Department of Biology – Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Romania.

¹²Astma-Allergy Denmark, Roskilde, Denmark.

¹³Réseau National de Surveillance Aérobiologique (RNSA), Brussieu, France.
¹⁴Department of Respiratory Science, Institute for Lung Health, University of Leicester, UK.
¹⁵Biodiversity Unit, University of Turku, Finland.
¹⁶Institute of Environmental Sciences, University of Castilla-La Mancha, Toledo, Spain.
¹⁷Pharmacy Department, National Pirogov Memorial Medical University, Vinnytsia, Ukraine.

¹⁸Department of Environmental Science, iCLIMATE, Aarhus University, Roskilde, Denmark.

Introduction

The study was aimed at determining the potential spatiotemporal risk of the co-occurrence of allergenic airborne pollen and fungal spore high concentrations in different bio-climatic zones in Europe. Specifically the number and timing of co-occurrence days, their long-term trends and general dependency on bioclimatic variables across European were investigated.

Material and methods

Birch, grass, mugwort, ragweed, olive pollen and Alternaria and Cladosporium fungal spores were investigated at 16 sites in Europe, in 2005–2019. All the sites met the minimum requirements for aerobiological monitoring. Meteorological data in daily resolution were obtained from the OGIMET database by a climate R package, only thermal and precipitation variables were used to characterize climatic conditions of a particular site to meet Köppen-Geiger classification. HC days corresponded to a days when daily spore or pollen concentrations exceed specific threshold values (100 pollen/m3 for birch and olive, 50 pollen/m3 for grasses, mugwort and ragweed). In the case of fungal spores, the threshold values of 100 spores/m3 for Alternaria and 3,000 spores/m3 for Cladosporium were considered.

Results

In Central and northern Europe, pollen and fungal spore seasons mainly overlap in June and July, while in South Europe, the highest pollen concentrations occur frequently outside of the spore seasons. In the coldest climate, no allergy thresholds were exceeded simultaneously by two spore or pollen taxa, while in the warmest climate most of the days with at least two pollen taxa exceeding threshold values were observed. The annual air temperature amplitude seems to

be the main bioclimatic factor influencing the accumulation of days in which Alternaria and Cladosporium spores simultaneously exceed allergy thresholds.

Conclusions

The phenomenon of co-occurrence of airborne allergen concentrations gets increasingly common in Europe and is proposed to be present on other continents, especially in temperate climate. Non-overlapping periods of high pollen or spore concentration that consecutively follow each other with only short gaps in between might markedly affect the health of sensitized people, prolonging their exposure to allergens.

Co-financed by the Minister of Science under the "Regional Excellence Initiative" Program for 2024-2027 (RID/SP/0045/2024/01)

Brak konfliktu interesów ze strony współautorów.

Praca nie prezentowana dotąd na Międzynarodowym Kongresie PTA